Extensions 1→N→G→Q→1 with N=C4xS3 and Q=C22

Direct product G=NxQ with N=C4xS3 and Q=C22
dρLabelID
S3xC22xC448S3xC2^2xC496,206

Semidirect products G=N:Q with N=C4xS3 and Q=C22
extensionφ:Q→Out NdρLabelID
(C4xS3):1C22 = D4:6D6φ: C22/C1C22 ⊆ Out C4xS3244(C4xS3):1C2^296,211
(C4xS3):2C22 = D4oD12φ: C22/C1C22 ⊆ Out C4xS3244+(C4xS3):2C2^296,216
(C4xS3):3C22 = C2xS3xD4φ: C22/C2C2 ⊆ Out C4xS324(C4xS3):3C2^296,209
(C4xS3):4C22 = C2xD4:2S3φ: C22/C2C2 ⊆ Out C4xS348(C4xS3):4C2^296,210
(C4xS3):5C22 = C2xQ8:3S3φ: C22/C2C2 ⊆ Out C4xS348(C4xS3):5C2^296,213
(C4xS3):6C22 = C2xC4oD12φ: C22/C2C2 ⊆ Out C4xS348(C4xS3):6C2^296,208
(C4xS3):7C22 = S3xC4oD4φ: C22/C2C2 ⊆ Out C4xS3244(C4xS3):7C2^296,215

Non-split extensions G=N.Q with N=C4xS3 and Q=C22
extensionφ:Q→Out NdρLabelID
(C4xS3).1C22 = D8:S3φ: C22/C1C22 ⊆ Out C4xS3244(C4xS3).1C2^296,118
(C4xS3).2C22 = Q8:3D6φ: C22/C1C22 ⊆ Out C4xS3244+(C4xS3).2C2^296,121
(C4xS3).3C22 = D4.D6φ: C22/C1C22 ⊆ Out C4xS3484-(C4xS3).3C2^296,122
(C4xS3).4C22 = Q16:S3φ: C22/C1C22 ⊆ Out C4xS3484(C4xS3).4C2^296,125
(C4xS3).5C22 = Q8.15D6φ: C22/C1C22 ⊆ Out C4xS3484(C4xS3).5C2^296,214
(C4xS3).6C22 = Q8oD12φ: C22/C1C22 ⊆ Out C4xS3484-(C4xS3).6C2^296,217
(C4xS3).7C22 = S3xD8φ: C22/C2C2 ⊆ Out C4xS3244+(C4xS3).7C2^296,117
(C4xS3).8C22 = D8:3S3φ: C22/C2C2 ⊆ Out C4xS3484-(C4xS3).8C2^296,119
(C4xS3).9C22 = S3xSD16φ: C22/C2C2 ⊆ Out C4xS3244(C4xS3).9C2^296,120
(C4xS3).10C22 = Q8.7D6φ: C22/C2C2 ⊆ Out C4xS3484(C4xS3).10C2^296,123
(C4xS3).11C22 = S3xQ16φ: C22/C2C2 ⊆ Out C4xS3484-(C4xS3).11C2^296,124
(C4xS3).12C22 = D24:C2φ: C22/C2C2 ⊆ Out C4xS3484+(C4xS3).12C2^296,126
(C4xS3).13C22 = C2xS3xQ8φ: C22/C2C2 ⊆ Out C4xS348(C4xS3).13C2^296,212
(C4xS3).14C22 = C2xC8:S3φ: C22/C2C2 ⊆ Out C4xS348(C4xS3).14C2^296,107
(C4xS3).15C22 = C8oD12φ: C22/C2C2 ⊆ Out C4xS3482(C4xS3).15C2^296,108
(C4xS3).16C22 = D12.C4φ: C22/C2C2 ⊆ Out C4xS3484(C4xS3).16C2^296,114
(C4xS3).17C22 = S3xC2xC8φ: trivial image48(C4xS3).17C2^296,106
(C4xS3).18C22 = S3xM4(2)φ: trivial image244(C4xS3).18C2^296,113

׿
x
:
Z
F
o
wr
Q
<